
PDFProcessor

http://www.waleson.eu
Purpose

PDFProcessor processes PDF files in a folder. The text within the PDF file is processed with a Pascal Script. Many
commands are available to extract key values from the text, print a hardcopy of the pdf file, and rename and move

the pdf file to a server folder all based on the extracted keywords. PDF files will not be overwritten, but a version
number will be appended on collision. A script is included for the standard Agilent ChemStation reports. The script can

be modified to fit any report in your laboratory that is produced by any kind or brand of instrument.

Schema

Screenshot

Flexible Scripting

Installation

Download URL

 http://www.waleson.nl/products/pdfprocessor

License file

PDFProcessor is protected by a license file. Without license file, PDFProcessor operates in demo mode (confirmation
dialogs). Automatic license installation occurs if the license file exists next to the setup program. It is possible to

install the license file after the installation.

PDF Virtual Printer

First install a PDF virtual printer. Any PDF virtual printer can be uses that can automatically save PDF files with unique
names to C:\PDF. Unfortunately many PDF virtual printers display dialogs during PDF creation, or overwrite existing

PDF files. Fortunately PDFCreator exists as a freeware PDF virtual printer with the required features. Download URL
http://sourceforge.net/projects/pdfcreator

Installer

Execute the setup program PDFProcessor_Installer_xxxxx.exe

A shortcut is added to the windows programs startup group. PDFProcessor automatically starts after user logon to

windows.

Configuration
After startup, PDFProcessor checks whether PDFCreator is installed and checks its configuration.

PDFProcessor contains specific functions to automatically configure PDFCreator version 0.9.3.

Manual setup

Set PDFCreator as the default printer, and configure Auto-Save

Concept

PDFProcessor monitors a selected folder for new PDF files. Each PDF file will be loaded and text extracted. A Pascal
script will interpret the text and print or move the PDF file.

PDF Flow
A. Chemstation Prints to Default Printer

B. PDFCreator produces PDF files in C:\PDF
C. PDFProcessor Monitors C:\PDF and interprets the text in each PDF file and can

1. Print a hardcopy to a selected printer

2. Rename the PDF file to the Sample Name found in the PDF text
3. Move the PDF file to a specified server folder

Action Script

The PDFProcessor Action script can be reset to factory defaults. The factory defaults depend on the License File.
Customers can ask to include their specific default Action script.

The action script is based on the Pascal script language. Many functions are added to assist PDF text search and PDF

file handling. The help file describes the functions.

Security

Users that are part of the Administrator group have unlimited access to the PDFProcessor features.
Other users can be restricted by an Administrator by setting specific checkboxes.

PDF files can be password protected with an Owner and or a User password.

The Owner password protects the PDF content for editing.

The User password protects the PDF content for viewing.

If PDFProcessor must act on protected PDF files, the owner or user passwords must be set, to allow PDFProcessor to
edit or read the content.

If PDFProcessor must protect PDF files, the Action script function Protect(Filename) should be used.

Standard Pascal Script Syntax

begin .. end constructor

procedure and function declarations

if .. then .. else constructor

for .. to .. do .. step constructor

while .. do constructor

repeat .. until constructor

try .. except and try .. finally blocks

case statements

array constructors (x:=[1, 2, 3];)

^ , * , / , and , + , - , or , <> , >=, <= , = , > , < , div , mod , xor , shl , shr operators

PDFProcessor Specific Pascal Script Commands

ActivateText1
After this command, all text search function will operate on Text1. Text1 and Text2 are the results of two different

methods of extracting text from a PDF file.

ActivateText2
After this command, all text search function will operate on Text2. Text1 and Text2 are the results of two different

methods of extracting text from a PDF file.

AppendToTextFile(FileName,Text: string)

Append Text to a text file.

Execute(FileName,Parameter: string)

Executes or opens the specified filename with the optional specified parameters

Log(Text1,Text2: string)
Write to Log (blue)

LogErr(Text1,Text2: string)

Write to Log (red)

IsAutomatic

Script was started Automatic

PDFName

PDF File Name, will be update after PDFMoveTo

PDFFile
PDF full File Path and Name, will be update after PDFMoveTo

PDFPath
PDF File Path, will be update after PDFMoveTo

PDFText

PDF Text Content

PDFContains(SubStr: string)

Test PDF Content for present SubString, case-insensitive

PDFLeft(Count: integer)
Extract first count characters of the PDF Content

PDFRight(Count: integer)
Extract last count characters of the PDF Content

PDFBetween(SubStr1, SubStr2: string)

Extract characters of the PDF Content between SubStr1 and SubStr2, case-insensitive

PDFAfter(SubStr: string)

Extract characters of the PDF Content after SubStr, case-insensitive

PDFBefore(SubStr: string)
Extract characters of the PDF Content before SubStr, case-insensitive

PDFAfterN(SubStr: string Count: integer)
Extract characters of the PDF Content after Count occurrences of SubStr, case-insensitive

PDFBeforeN(SubStr: string Count: integer)

Extract characters of the PDF Content before Count occurrences of SubStr, case-insensitive

PDFMid(Start, Length: integer)

Extract Count characters of the PDF Content after Start character

PDFREFind(RegExp: string Index: integer)
Regular Expression, extract the match within the indexed brackets

Example PDF Content= ‘abcd efgh 1234 5678’

PDFREFind(‘(\d+).(\d+)’,2) returns ‘5678’
See Regular Expression information on the Internet

PDFREMatch(RegExp: string)

Regular Expression, matches the PDF Content
Example PDF Content= ‘abcd efgh 1234 5678’

PDFREMatch(‘efgh’) returns true
See Regular Expression information on the Internet

PDFREReplace(RegExp, Substitute: string)
Regular Expression, replaces all matching SubStrings with Substitute

Example PDF Content= ‘abcd efgh 1234 5678’

PDFREReplace(‘efgh’,’a’) returns ‘abcd a 1234 5678’
See Regular Expression information on the Internet

Protect(FileName: string)

Protect a PDF file with passwords from the security panel

WaterMarkPages(FileName, Identifier, Text: string)

Puts Text string as watermark on every page that contains the Identifier string.

Repaginate(FileName: string X, Y: double)
Finds existing page counter text nearest to the bottom within X, Y mm from right lower corner.

Insert the new page counter text on every page at the same position with the original font.

PDFAppendTo(FileName: string)

Appends PDF Content to the specified file

CoverPage(FileName, Header, Text: string)

Add a cover page with header and text strings at the start of the PDF Content
Text can contain newline (#10) and tab (#9) characters

DeletePages(FileName: string; StartPage, EndPage: integer)

Delete specified pages

PDFPrintTo(PrinterName: string)

Print to the specified printer name. Available printer names are displayed in the Log at startup

AppendTo(Source, Destination: string)
Appends source file content to the specified destination file

AppendToPDF(FileName: string)
Appends source file to the PDF Content

PrintTo(FileName, PrinterName: string)

Print to the specified PDF file to the specified printer name. Available printer names are displayed in the Log at startup

DateTimeNow(Format: string)

Format Now, Format characters: yy yyyy m mm mmm mmmm d dd ddd dddd h hh n nn s ss z zzz

DateTime(Time, Format: string)
Format Time, Format characters: yy yyyy m mm mmm mmmm d dd ddd dddd h hh n nn s ss z zzz

PDFCopyTo(Destination: string)

Copy PDF file to Destination
Invalid characters are replaced with _

Multiple backslashes are reduced singles
Force creation of complete Destination directory

Ensure .PDF extension

A _0000 counter is appended to prevent file overwriting
After an error, the file is moved to a FAILED sub-folder

After an un-recoverable error, Automation is paused

PDFMoveTo(Destination: string)
Move PDF file to Destination

Invalid characters are replaced with _

Multiple backslashes are reduced singles
Force creation of complete Destination directory

Ensure .PDF extension
A _0000 counter is appended to prevent file overwriting

After an error, the file is moved to a FAILED sub-folder

After an un-recoverable error, Automation is paused
Will update the PDFPath and PDFFile variables

LastPDFFile(Destination: string)

Find the last Destination PDF file eventual with an appended _0000 counter

PDFPrint

Print to the PaperPrinter

Print(FileName: string)
Print the specified file to the PaperPrinter

PDFDelete
Delete the PDF file

Contains(Text, SubStr: string)

Test Text for present SubString, case-insensitive

Left(Text: string N: integer)

Extract first count characters of the PDF Content

Right(Text: string N: integer)
Extract last count characters of the PDF Content

Between(Text, SubStr1, SubStr2: string)
Extract characters of Text between SubStr1 and SubStr2, case-insensitive

After(Text, SubStr: string)

Extract characters of Text after SubStr, case-insensitive

Before(Text, SubStr: string)

Extract characters of Text before SubStr, case-insensitive

AfterN(Text, SubStr: string Count: integer)
Extract characters of Text after Count occurrences of SubStr, case-insensitive

BeforeN(Text, SubStr: string Count: integer)
Extract characters of Text before Count occurrences of SubStr, case-insensitive

Mid(Text: string Start, Length: integer)

Extract Count characters of Text after Start character

PosI(SubStr, Text: string)

Find position of SubStr in Text, case-insensitive

SameText(Text1, Text2: string)
Compares Text1 and Tex2, case-insensitive

Token(Text, Delimiter: string Index: integer)
Split Text on each occurrence of the Delimiter string and return the SubString at Index, a negative number will start

counting from the end, case-insensitive
Token(‘ABC DEF GHI JKL MNO’,’ ’,2) returns ‘DEF’
Token(‘ABC DEF GHI JKL MNO’,’ ’,-2) returns ‘JKL’

Tokens(Text, Delimiter: string; Count: integer);

Split Text on each occurrence of the Delimiter string and return SubStrings up to Count separated by the delimiter, a
negative number will start counting from the end, case-insensitive

Tokens(‘ABC DEF GHI JKL MNO’,’ ’,2) returns ‘ABC DEF’
Tokens(‘ABC DEF GHI JKL MNO’,’ ’,-2) returns ‘ABC DEF GHI JKL’

REFind(Text, RegExp: string Index: integer)
Regular Expression, extract the match within the indexed brackets

REFind(‘abcd efgh 1234 5678’, ‘(\d+).(\d+)’,2) returns ‘5678’
See Regular Expression information on the Internet

REMatch(Text, RegExp: string)

Regular Expression, matches the PDF Content

REMatch(‘abcd efgh 1234 5678’, ‘efgh’) returns true
See Regular Expression information on the Internet

REReplace(Text, RegExp, Substitute: string)

Regular Expression, replaces all matching SubStrings with Substitute

REReplace(‘abcd efgh 1234 5678’, ‘efgh’,’a’) returns ‘abcd a 1234 5678’
See Regular Expression information on the Internet

TrimAll(Text: string)

Remove all leading and trailing white space characters (space, tab, linefeed, etc)

TrimBackSlash(FileName: string)

Remove all trailing and double backslashes

ParentFolder(FilePath: string);
Return the Parent Folder

SubDir(FilePath: string; Index: integer)
Return the SubDirectory at Index, a negative number will start counting from the end

SubDirs(‘C:\ABC\DEF\GHI’,2) returns ‘ABC’
SubDirs(‘C:\ABC\DEF\GHI’,-2) returns ‘DEF’

SubDirs(FilePath: string; Count: integer)
Return the SubDirectories up to Count, a negative number will start counting from the end

SubDirs(‘C:\ABC\DEF\GHI’,2) returns ‘C:\ABC’
SubDirs(‘C:\ABC\DEF\GHI’,-2) returns ‘C:\ABC\DEF’

FixFileName(FileName: string)

Remove illegal characters: \/:*?"<>|

FixFilePath(FilePath: string)

Remove illegal characters: /:*?"<>|

CopyFile(Source, Destination: string)

Copy Source File to Destination

DeleteFile(Path: string)

Delete File

FileExists(Path: string)
Test File for Existence

AppendToTextFile (Path, Text: string)
Append Text to text file. Create file if not exists.

DirectoryExists(Path: string)

Test Directory for Existence

NewLine

NewLine character Useful for searching Line Breaks

TextReplace(Text, Old, New: string)
Replace all occurrences of the old sub string with new the substring, case-insensitive

QueueFolder
Queue Folder path

FailedFolder

Failed Folder path

ComputerName

Local Computer Name

UserName
Windows User Login Name

Standard Pascal Script Commands

Abs(X: real)

AnsiCompareStr(S1, S2: string)
AnsiCompareText(S1, S2: string)

AnsiLowerCase(S: string)
AnsiUpperCase(S: string)

Append(F: text)

ArcTan(X: real)
Assigned(P: pointer)

AssignFile(F: file FileName: string)
Beep

Chdir(S: string)

Chr(X: byte)
CloseFile(F: file)

CompareStr(S1, S2: string)
CompareText(S1, S2: string)

Copy(S: string Index, Count: integer):
Cos(X: real)

CreateOleObject(const ClassName: string)

Date
DateTimeToStr(DateTime: TDateTime)

DateToStr(DateTime: TDateTime)
DayOfWeek(DateTime: TDateTime)

Dec(X: integer [N: integer])

DecodeDate(DateTime: TDateTime Year, Month, Date: integer)
DecodeTime(DateTime: TDateTime Hour, Min, Sec, MSec: integer)

Delete(S: string Index, Count: integer)
EncodeDate(Year, Month, Date: integer)

EncodeTime(Hour, Min, Sec, MSec: integer):

EOF(F: file)
Exp(X: real)

FilePos(F: file)
FileSize(F: file)

FloatToStr(Value: real)
Format(Format: string Arg: array of const)

FormatDateTime(format: string DateTime: TDateTime)

FormatFloat(Format: string X: real)
Frac(X: real)

GetActiveOleObject(const ClassName: string)
High(X: array)

Inc(X: integer [N: integer])

IncMonth(DateTime: TDateTime [N: integer])
InputQuery(Caption, Prompt, Value: string)

Insert(SubStr, Text: string Index: integer)
Int(X: real)

IntToHex(X: integer)
IntToStr(X: integer)

IsLeapYear(Year: integer)

IsValidIdent(Ident: string)
Length(S: string)

Ln(X: real)
Low(X: array)

LowerCase(s: string)

Now
Odd(X: integer)

Ord(X: ordinal)
Pos(SubStr, Text: string)

Raise

Random([Range: integer])
ReadLn(F: file [...VN])

Reset(F: file [RecSize: integer])

Rewrite(F: file [RecSize: integer])

Round(X: real)
ShowMessage(Text: string)

Sin(X: real)
Sqr(X: real)

Sqrt(X: real)

StrToDate(S: string)
StrToDateTime(S: string)

StrToFloat(S: string)
StrToInt(S: string)

StrToIntDef(S: string Def: integer)
StrToTime(S: string)

Time

TimeToStr(DateTime: TDateTime)
Trim(S: string)

TrimLeft(S: string)
TrimRight(S: string)

Trunc(X: real)

UpperCase(S: string)
VarArrayCreate(const Bounds: array of Integer VarType: TVarType)

VarArrayHighBound(const A: Variant Dim: Integer)
VarArrayLowBound(const A: Variant Dim: Integer)

VarIsNull(const V: Variant)
VarToStr(const V: Variant)

Write(F: file P1 [..PN])

WriteLn(F: file P1 [..PN])

Standard Pascal Script Structure

Script structure is made of two major blocks: a) procedure and function declarations and b) main block. Both are
optional, but at least one should be present in script. There is no need for main block to be inside begin..end. It could

be a single statement. Some examples:

SCRIPT 1:
procedure DoSomething;

begin

CallSomething;
end;

begin
 CallSomethingElse;

end;

SCRIPT 2:

begin
 CallSomethingElse;

end;

SCRIPT 3:

function MyFunction;
begin

 result:='Ok!';
end;

SCRIPT 4:
CallSomethingElse;

Unlike in pascal, statements terminated by ";" character is not required. begin..end blocks are allowed to group

statements.

Identifiers

Identifier names in script (variable names, function and procedure names, etc.) follow the most common rules in

pascal: should begin with a character (a..z or A..Z), or '_', and can be followed by alphanumeric chars or '_' char.
Cannot contain any other character os spaces. Valid identifiers:

VarName

_Some
V1A2

_____Some____

Invalid identifiers:

2Var
My Name

Some-more
This,is,not,valid

Assign statements

Just like in Pascal, assign statements (assign a value or expression result to a variable or object property) are built
using ":=". Examples:

MyVar:=2;
Button.Caption:='This ' + 'is ok.';

Character strings

strings (sequence of characters) are declared in pascal using single quote (') character. Double quotes (") are not

used. You can also use #nn to declare a character inside a string. There is no need to use '+' operator to add a
character to a string. Some examples:

A:='This is a text';

Str:='Text '+'concat';
B:='String with CR and LF char at the end'#13#10;

C:='String with '#33#34' characters in the middle';

Comments

Comments can be inserted inside script. You can use // chars or (* *) or { } blocks. Using // char the comment will

finish at the end of line.
//This is a comment before ShowMessage

ShowMessage('Ok');
(* This is another comment *)

ShowMessage('More ok!');

{
 And this is a comment

 with two lines
}

ShowMessage('End of okays');

Variables

There is no need to declare variable types in script. Thus, you declare variable just using var directive and its name.

There is no need to declare variables if scripter property OptionExplicit is set to false. In this case, variables are
implicit declared. If you want to have more control over the script, set OptionExplicit property to true. This will raise a

compile error if variable is used but not declared in script. Examples:

SCRIPT 1:

procedure Msg;
var S;

begin

S:='Hello world!';
ShowMessage(S);

end;

SCRIPT 2:
var A;

begin

A:=0;
A:=A+1;

end;

SCRIPT 3:

var S;
S:='Hello World!';

ShowMessage(S);

Note that if script property OptionExplicit is set to false, then var declarations are not necessary in any of scripts
above.

Indexes

Strings, arrays and array properties can be indexed using "[" and "]" chars. For example, if Str is a string variable, the
expression Str[3] returns the third character in the string denoted by Str, while Str[I + 1] returns the character

immediately after the one indexed by I. More examples:

MyChar:=MyStr[2];
MyStr[1]:='A';

MyArray[1,2]:=1530;
Lines.Strings[2]:='Some text';

Arrays

Script support array constructors and support to variant arrays. To construct an array, use "[" and "]" chars. You can

construct multi-index array nesting array constructors. You can then access arrays using indexes. If array is multi-
index, separate indexes using ",". If variable is a variant array, script automatically support indexing in that variable. A

variable is a variant array is it was assigned using an array constructor, if it is a direct reference to a Delphi variable

which is a variant array (see Delphi integration later) or if it was created using VarArrayCreate procedure. Arrays in
script are 0-based index.

Some examples:
NewArray := [2,4,6,8];

Num:=NewArray[1]; //Num receives "4"
MultiArray := [['green','red','blue'] , ['apple','orange','lemon']];

Str:=MultiArray[0,2]; //Str receives 'blue'

MultiArray[1,1]:='new orange';

if statements

There are two forms of if statement: if...then and the if...then...else. Like normal pascal, if the if expression is true,

the statement (or block) is executed. If there is else part and expression is false, statement (or block) after else is
execute.

Examples:
if J <> 0 then

 Result := I/J;

if J = 0 then

 Exit
else

 Result := I/J;

if J <> 0 then begin

Result := I/J;
Count := Count + 1;

end else
 Done := True;

while statements

A while statement is used to repeat a statement or a block, while a control condition (expression) is evaluated as true.
The control condition is evaluated before the statement. Hence, if the constrol condition is false at first iteration, the

statement sequence is never executed. The while statement executes its constituent statement (or block) repeatedly,
testing expression before each iteration. As long as expression returns True, execution continues.

Examples:

while Data[I] <> X do

 I := I + 1;

while I > 0 do begin

 if Odd(I) then
 Z := Z * X;

 I := I div 2;
 X := Sqr(X);

end;

while not Eof(InputFile) do begin

 Readln(InputFile, Line);
 Process(Line);

end;

repeat statements

The syntax of a repeat statement is repeat statement1; ...; statementn; until expression where expression returns a

Boolean value. The repeat statement executes its sequence of constituent statements continually, testing expression
after each iteration. When expression returns True, the repeat statement terminates. The sequence is always

executed at least once because expression is not evaluated until after the first iteration. Examples:

repeat

 K := I mod J;
 I := J;

 J := K;
until J = 0;

repeat
 Write('Enter a value (0..9): ');

 Readln(I);
until (I >= 0) and (I <= 9);

for statements

Scripter support for statements with the following syntax: for counter := initialValue to finalValue do statement For
statement set counter to initialValue, repeats execution of statement (or block) and increment value of counter until

counter reachs finalValue.
Examples:

SCRIPT 1:
for c:=1 to 10 do

 a:=a+c;

SCRIPT 2:

for i:=a to b do begin
 j:=i^2;

 sum:=sum+j;
end;

case statements

Scripter support case statements with following syntax:

case selectorExpression of
 caseexpr1: statement1;

 ...

 caseexprn: statementn;
else

 elsestatement;
end

if selectorExpression matches the result of one of caseexprn expressions, the respective statement (or block) will be
execute. Otherwise, elsestatement will be execute. Else part of case statement is optional. Different from Delphi, case

statement in script doesn't need to use only ordinal values. You can use expressions of any type in both selector
expression and case expression.

Example:
case uppercase(Fruit) of

 'lime': ShowMessage('green');

 'orange': ShowMessage('orange');
 'apple': ShowMessage('red');

else
 ShowMessage('black');

end;

function and procedure declaration

Declaration of functions and procedures are similar to Object Pascal in Delphi, with the difference you don't specify

variable types. Just like OP, to return function values, use implicited declared result variable. Parameters by reference
can also be used, with the restriction mentioned: no need to specify variable types.

Some examples:

procedure HelloWord;

begin
 ShowMessage('Hello world!');

end;

procedure UpcaseMessage(Msg);

begin
 ShowMessage(Uppercase(Msg));

end;

function TodayAsString;

begin
 result:=DateToStr(Date);

end;

function Max(A,B);
begin

 if A>B then

 result:=A
else

 result:=B;
end;

procedure SwapValues(var A, B);
Var Temp;

begin
 Temp:=A;

 A:=B;

 B:=Temp;
end;

